False positives and false negatives in citizen science monitoring data: should we be worried?

Sam Cruickshank

Department of Environmental Studies and Evolutionary Biology University of Zürich Switzerland

Introduction

Citizen Science -> large scale data collection > Essential for species monitoring

Data quality still perceived as major problem

Repeat observations allow modelling of these observer effects

In species monitoring, quality can be characterised as:

- False negatives
- False positives

Observation Biases

Observation Biases

Bias depends on:

- True occupancy
- False positives/imperfect detection rates

More visits = higher cumulative detection probability

= lower cumulative false 'discovery' rate

Observation Biases

10 visits at a site

Possible site histories include:

a) 0000100000 b) 110111111 **True positive**

False negative

False positive

True negative

Bias depends on:

- True occupancy
- False positives/imperfect detection rates

More visits = higher cumulative detection probability

= lower cumulative false-positive rate

Research Objectives

- Estimate prevalence of Imperfect detection False positives
- How do these rates bias population trend estimation

Study System

- 1999-2013
- 1054 sites

10 core areas surveyed every 3 years

• 3 surveys/ year

• Counts of all amphibians recorded

Modelling Approach

- Focus on occupancy (not count) data
- Each species separately
- Dynamic occupancy models
 - Occupancy
 - Trend calculation
 - Survival
 - Colonisation

3 Models:

- Naïve
- False negatives
- False positives

- observed data
- estimate imperfect detection
- both imperfect detection and false positives

Preliminary Results: Imperfect detection

Per-visit detection (when species is present)

Bars= 95% credible intervals

- 12 species
- High variation

Preliminary Results: False-positives

- Per-visit false positives (when species is absent)
- Relatively low rates
- Common species more problematic

No evidence for "rare-species" bias

Preliminary population trends- Pool frog

- High true detection (84.5%)
- High false positives (7.7%)
- Trends are qualitatively comparable

Preliminary population trends- Smooth Newt

- Rare species
- Low detection (16.1%)
- Low false positives (1.0%)
- Trend estimates differ qualitatively
- Models overestimate
- Not enough information to draw conclusions

Rare species issues

False positives create large bias

But not enough information to estimate observer effects

Solution: Incorporate more information

- "Confirm" detections
- Incorporate abundance (higher abundance \rightarrow higher chance of true detection)
- Increased estimation of observer effects
- Better trend estimates

Conclusions: should we be worried?

- Yes: We know imperfect detection is the norm
 - False positives do happen
- **No:** Problems are not unique to citizen science data
 - For non-rare species, population trends remain broadly similar

Rare species: Problematic

>Need sufficient information to estimate observation values

Accounting for detection is not complex, but it is important!

Need to demonstrate data quality

Acknowledgements

- Benedikt Schmidt
- Arpat Ozgul
- Christoph Bühler
- Thierry Chambert
- Volunteer field surveyors

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Office for the Environment FOEN Bundesamt für Umwelt BAFU

• Departement Bau, Verkehr und Umwelt, Abteilung Landschaft und Gewässer, Kanton Aargau

